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First some general remarks: Unlike other problems, problem 6 and 7 on the Numerical Analysis
qualifying exam test on PDE materials that are mostly not covered in Math-269B. Topics that have
been tested on but not covered in 269B include

(1) conservation laws (F22.07, S22.07, S21.06, S20.06, F19.06)

(2) second order hyperbolic equations (F21.07, S20.07)

(3) diffusion equation in 2D/3D or convection-diffusion equation (S22.06, F21.06, F20.07, F19.07,
S19.07)

(4) system of transport equations (F20.06, S19.06)

(5) who knows :(

My 269B used the textbook [Str04], which contains useful stuff for (2)-(4). More specifically,
Chapter 6 is useful for convection-diffusion equations, Chapter 7 is useful for systems and Chapter
8 is useful for second order hyperbolic equations (although you can usually transform these second

order equations into first order equivalent transport systems by considering v �

�
ut

ux



which gives

you something of the form vt � Avx � Bv). For many (2)-(4) type problems, the first part asks
about well-posedness of the PDE, which can be done using symbol analysis (covered in Chapter 9)
or Fourier transform.

Conservation law problems appear frequently and are usually very consistent. If you prepare and
just remember one example, it can be basically free points. However, the book [LeV08] I used
doesn’t seem to contain a good and complete solution template, so we (credit to Evan Davis and
Jacob Murri) put together a short solution by modifying the one given in Howard Heaton’s notes.
I typed up this document after taking the NA exam, hoping future students can also benefit.
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The conservation law problem almost always takes the following form:

Consider the equation
ut � pfpuqqx � εuxx

to be solved for t ¡ 0, 0 ¤ x ¤ 1 with 1 periodic boundary conditions and smooth initial data
upx, 0q � u0pxq. Give a finite difference scheme that converges for all t ¡ 0, even as εÑ 0�.

Answer: Since Lax-equivalence theorem no longer applies, we need some other theorem. We
use Theorem 15.2 in [LeV08]: Suppose there is a numerical scheme that can be written in conser-
vation form with a Lipschitz continuous numerical flux, consistent with some scalar conservation
law. If the method is TV-stable, then the method is convergent for all t ¡ 0.

We consider the modified Lax-Friedrichs scheme and verify assumptions of the theorem. The scheme
is given by

vn�1
m � kvnm � 1�k

2
pvnm�1 � vnm�1q

k
�

fpvnm�1q � fpvnm�1q

2h
� ε

vnm�1 � 2vnm � vnm�1

h2
,

which can be equivalently written as

vn�1
m � Hpvmm�1, v

n
m, v

n
m�1q :� kvnm�

1� k

2
pvnm�1�vnm�1q�

k

2h
pfn

m�1�fn
m�1q�

εk

h2
pvnm�1�2vnm�vnm�1q.

We now verify the assumptions of the theorem.

� The scheme can be written in conservation form, i.e. we can find numerical flux function
F pu, vq with

vn�1
m � un

m � λpF pvnm, v
n
m�1q � F pvnm�1, v

n
mqq

where λ � k
h
. We note

vn�1
m � vnm �

1� k

2
pvnm�1 � vnm � vnm � vnm�1q �

k

2h
pfn

m�1 � fn
m � fn

m � fn
m�1q

�
εk

h2
pvnm�1 � vnm � vnm � vnm�1q.

Thus we can set

F pu, vq �

�
1� k

2λ
�

ε

h



pu� vq �

fpuq � fpvq

2
.

� The numerical flux is Lipschitz continuous and consistent with f , i.e., there exists L ¡ 0 with

|F pu, vq � fpuq| ¤ L �maxt|u� u|, |v � u|u

for u, v sufficiently close to u. Assume v is bounded, then f is a C1 function on a compact
set and thus Lipschitz continuous. Assume f is K-Lipschitz, λ is kept fixed and ε � h2

2
with

h ¤ 1, we have

|F pu, vq � fpuq| ¤

�
1

2λ
�

1

2



� |u� u� u� v| �

1

2
|fpuq � fpuq| �

1

2
|fpvq � fpuq|

¤

�
1

λ
� 1�K



�maxt|u� u|, |v � u|u.
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� We finally check the scheme is TV-stable. Howard Heaton’s solution checks that the scheme is
ℓ1-contracting, which is a bit long and hard to memorize. Luckily, there is a simpler condition,
monotonicity, which is sufficient due to the following implications:

monotone ñ ℓ1-contracting ñ TVD (total variation diminishing).

Note our scheme is given by
vn�1
m � Hpvmm�1, v

n
m, v

n
m�1q.

It is monotone if
BH
Bvnm�1

¥ 0,
BH
Bvnm

¥ 0,
BH
Bvnm�1

¥ 0.

We claim this is true if the CFL condition is satisfied:

|λf 1puq| ¤ 1 for any u satisfying min
m
pun

m, v
n
mq ¤ u ¤ max

m
pun

m, v
n
mq.

We simply compute (remember ε � h2

2
)

BH
Bvnm

� k �
2εk

h2
� k � k � 0

BH
Bvnm�1

�
1� k

2
�

λ

2
f 1pvnm�1q �

εk

h2
�

1

2
�

k

2
�

λf 1

2
�

k

2
�

1� λf 1

2
¥ 0

BH
Bvnm�1

�
1� k

2
�

λ

2
f 1pvnm�1q �

εk

h2
�

1

2
�

k

2
�

λf 1

2
�

k

2
�

1� λf 1

2
¥ 0.

Now just apply the theorem and note ε � h2

2
Ñ 0 as k, hÑ 0.

Remark 0.1. Occasionally the problem will have a first part asking you to provide a second order
accurate scheme which converges for small t. Just give any convergent second order method (e.g.
Crank-Nicolson). Part of the reason it doesn’t work for all t ¡ 0 is Lax-equivalence theorem no
longer applies (shocks/rarefactions make PDE no longer well-posed). Note by Theorem 15.6 in
[LeV08], our monotone scheme cannot be second order accurate.

Remark 0.2. There are times when the problem also asks you to prove minimum/maximum prin-
ciple of your scheme, which follows directly from monotonicity. Use mean value theorem to get
fpvnm�1q � fpvnm�1q � f 1pξqpvnm�1 � vnm�1q and do the usual L8 norm bound.

Remark 0.3. Sometimes the PDE doesn’t have the artificial viscosity term (ε � 0). In that case
the regular Lax-Friedrichs scheme will directly work:

vn�1
m � 1

2
pvnm�1 � vnm�1q

k
�

fpvnm�1q � fpvnm�1q

2h
� 0

The modification term kvnm when ε �� 0 is just to make the scheme monotone p BH
Bvnm

¥ 0q. The rest
of the proof should be very similar.
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