Publications
Preprints
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, and Hayden Schaeffer.
arXiv preprint arXiv:2409.09811, 2024. [code]Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey
Haixin Wang, Yadi Cao, Zijie Huang, Yuxuan Liu, Peiyan Hu, Xiao Luo, Zezheng Song, Wanjia Zhao, Jilin Liu, Jinan Sun, Shikun Zhang, Long Wei, Yue Wang, Tailin Wu, Zhi-Ming Ma, and Yizhou Sun.
arXiv preprint arXiv:2408.12171, 2024.Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation
Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer.
arXiv preprint arXiv:2404.12355, 2024. [code]
Journal Papers
PROSE: Predicting Multiple Operators and Symbolic Expressions using Multimodal Transformers
Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer.
Neural Networks, 106707, 2024. [code]Random Feature Models for Learning Interacting Dynamical Systems
Yuxuan Liu, Scott G. McCalla, and Hayden Schaeffer.
Proceedings of the Royal Society A 479 (2275), 20220835, 2023. [code]Surfactant Dynamics from the Arnold Perspective
J. Jenkins, C. Lee, Y. Liu, E. Lu, and D. Reed.
SIAM Undergraduate Research Online 14, 2021.